题目:输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变。句子中单词以空格符隔开。为简单起见,标点符号和普通字母一样处理。
例如输入“I am a student.”,则输出“student. a am I”。
分析:由于编写字符串相关代码能够反映程序员的编程能力和编程习惯,与字符串相关的问题一直是程序员笔试、面试题的热门题目。本题也曾多次受到包括微软在内的大量公司的青睐。
由于本题需要翻转句子,我们先颠倒句子中的所有字符。这时,不但翻转了句子中单词的顺序,而且单词内字符也被翻转了。我们再颠倒每个单词内的字符。由于单词内的字符被翻转两次,因此顺序仍然和输入时的顺序保持一致。
还是以上面的输入为例子。翻转“I am a student.”中所有字符得到“.tneduts a ma I”,再翻转每个单词中字符的顺序得到“students. a am I”,正是符合要求的输出。
参考代码:
///////////////////////////////////////////////////////////////////////
// Reverse a string between two pointers
// Input: pBegin - the begin pointer in a string
// pEnd - the end pointer in a string
///////////////////////////////////////////////////////////////////////
void Reverse(char *pBegin, char *pEnd)
{
if(pBegin == NULL || pEnd == NULL)
return;
while(pBegin < pEnd)
{
char temp = *pBegin;
*pBegin = *pEnd;
*pEnd = temp;
pBegin ++, pEnd --;
}
}
///////////////////////////////////////////////////////////////////////
// Reverse the word order in a sentence, but maintain the character
// order inside a word
// Input: pData - the sentence to be reversed
///////////////////////////////////////////////////////////////////////
char* ReverseSentence(char *pData)
{
if(pData == NULL)
return NULL;
char *pBegin = pData;
char *pEnd = pData;
while(*pEnd != '\0')
pEnd ++;
pEnd--;
// Reverse the whole sentence
Reverse(pBegin, pEnd);
// Reverse every word in the sentence
pBegin = pEnd = pData;
while(*pBegin != '\0')
{
if(*pBegin == ' ')
{
pBegin ++;
pEnd ++;
continue;
}
// A word is between with pBegin and pEnd, reverse it
else if(*pEnd == ' ' || *pEnd == '\0')
{
Reverse(pBegin, --pEnd);
pBegin = ++pEnd;
}
else
{
pEnd ++;
}
}
return pData;
}
判断整数序列是不是二元查找树的后序遍历结果[折叠]
题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。如果是返回true,否则返回false。
例如输入5、7、6、9、11、10、8,由于这一整数序列是如下树的后序遍历结果:
8
/ \
6 10
/ \ / \
5 7 9 11
因此返回true。
如果输入7、4、6、5,没有哪棵树的后序遍历的结果是这个序列,因此返回false。
分析:这是一道trilogy的笔试题,主要考查对二元查找树的理解。
在后续遍历得到的序列中,最后一个元素为树的根结点。从头开始扫描这个序列,比根结点小的元素都应该位于序列的左半部分;从第一个大于跟结点开始到跟结点前面的一个元素为止,所有元素都应该大于跟结点,因为这部分元素对应的是树的右子树。根据这样的划分,把序列划分为左右两部分,我们递归地确认序列的左、右两部分是不是都是二元查找树。
参考代码:
using namespace std;
///////////////////////////////////////////////////////////////////////
// Verify whether a squence of integers are the post order traversal
// of a binary search tree (BST)
// Input: squence - the squence of integers
// length - the length of squence
// Return: return ture if the squence is traversal result of a BST,
// otherwise, return false
///////////////////////////////////////////////////////////////////////
bool verifySquenceOfBST(int squence[], int length)
{
if(squence == NULL || length <= 0)
return false;
// root of a BST is at the end of post order traversal squence
int root = squence[length - 1];
// the nodes in left sub-tree are less than the root
int i = 0;
for(; i < length - 1; ++ i)
{
if(squence[i] > root)
break;
}
// the nodes in the right sub-tree are greater than the root
int j = i;
for(; j < length - 1; ++ j)
{
if(squence[j] < root)
return false;
}
// verify whether the left sub-tree is a BST
bool left = true;
if(i > 0)
left = verifySquenceOfBST(squence, i);
// verify whether the right sub-tree is a BST
bool right = true;
if(i < length - 1)
right = verifySquenceOfBST(squence + i, length - i - 1);
return (left && right);
}