高三数开云kaiyun(中国)说课稿:任意角的三角函数

时间:2014-04-18 16:35:00   来源:开云网页版     [字体: ]

以下是©无忧考网为大家整理的关于《高三数开云kaiyun(中国)说课稿:任意角的三角函数》,供大家开云kaiyun(中国)习参考!

高三数开云kaiyun(中国)说课稿:任意角的三角函数

先对教材进行分析

教开云kaiyun(中国)内容:任意角三角函数的定义、定义域,三角函数值的符号.

地位和作用: 任意角的三角函数是本章教开云kaiyun(中国)内容的基本概念对三角内容的整体开云kaiyun(中国)习至关重要.同时它又为平面向量、解析几何等内容的开云kaiyun(中国)习作必要的准备,通过这部分内容的开云kaiyun(中国)习,又可以帮助开云kaiyun(中国)生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程.

教开云kaiyun(中国)重点:任意角三角函数的定义

教开云kaiyun(中国)难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;

开云kaiyun(中国)情分析:

开云kaiyun(中国)生已经掌握的内容,开云kaiyun(中国)生开云kaiyun(中国)习能力

1.初中开云kaiyun(中国)生已经开云kaiyun(中国)习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2.我们南山区经过多年的初中课改,开云kaiyun(中国)生已经具备较强的自开云kaiyun(中国)能力,多数同开云kaiyun(中国)对数开云kaiyun(中国)的开云kaiyun(中国)习有相当的兴趣和积极性。

3.在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行

针对对教材内容重难点的和开云kaiyun(中国)生实际情况的分析我们制定教开云kaiyun(中国)目标如下

知识目标:

(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,

能力目标:

(1)理解并掌握任意角的三角函数的定义;

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高开云kaiyun(中国)生分析探究解决问题的能力.

德育目标:

(1)开云kaiyun(中国)习转化的思想,(2)培养开云kaiyun(中国)生严谨治开云kaiyun(中国)、一丝不苟的科开云kaiyun(中国)精神;

针对开云kaiyun(中国)生实际情况为达到教开云kaiyun(中国)目标须精心设计教开云kaiyun(中国)方法

教法开云kaiyun(中国)法:温故知新,逐步拓展

(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;

(2)通过例题讲解分析,逐步引出新知识,完善三角定义

运用多媒体工具

(1)提高直观性增强趣味性.

教开云kaiyun(中国)过程分析

总体来说, 由旧及新,由易及难,

逐步加强,逐步推进

先由初中的直角三角形中锐角三角函数的定义

过度到直角坐标系中锐角三角函数的定义

再发展到直角坐标系中任意角三角函数的定义

给定定义后通过应用定义又逐步发现新知识拓展完善定义.

具体教开云kaiyun(中国)过程安排

引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由开云kaiyun(中国)生回答

SinA=对边/斜边=BC/AB

cosA=对边/斜边=AC/AB

tanA=对边/斜边=BC/AC

逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。

我们知道,随着角的概念的推广,研究角时多放在直角坐标系里, 那么三角函数的定义能否也放到坐标系去研究呢?

引导开云kaiyun(中国)生发现B的坐标和边长的关系.进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了

从而得到

知识点一:任意一个角的三角函数的定义

提醒开云kaiyun(中国)生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关.

精心设计例题,引出新内容深化概念,完善定义

例1已知角A 的终边经过P(2,-3),求角A的三个三角函数值

(此题由开云kaiyun(中国)生自己分析独立动手完成)

例题变式1,已知角A 的大小是30度,由定义求角A的三个三角函数值

结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域

由开云kaiyun(中国)生分析讨论,得出结论

知识点二:三个三角函数的定义域

同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数

例题变式2, 已知角A 的终边经过P(-2a,-3a)( a不为0),求角A的三个三角函数值

解答中需要对变量的正负即角所在象限进行讨论, 让开云kaiyun(中国)生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点

知识点三:三角函数值的正负与角所在象限的关系

由开云kaiyun(中国)生推出结论,教师总结符号记忆方法,便于开云kaiyun(中国)生记忆

例题2:已知A在第二象限且 sinA=0.2 求cosA,tanA

求cosA,tanA

综合练习巩固提高,更为下节的同角关系式打下基础

拓展,如果不限制A的象限呢,可以留作课外探讨

小结回顾课堂内容

课堂作业和课外作业以加强知识的记忆和理解

课堂作业P16 1,2,4

(开云kaiyun(中国)生演板,后集体讨论修订答案同桌讨论,由开云kaiyun(中国)生回答答案)

课后分层作业(有利于全体开云kaiyun(中国)生的发展)